Recent Developments in Social and Location Recommendations

Irwin King Joint work with Hao Ma and Cheng Chen

Department of Computer Science and Engineering The Chinese University of Hong Kong

> <u>king@cse.cuhk.edu.hk</u> <u>http://www.cse.cuhk.edu.hk/~king</u>

©2013 Irwin King. All rights reserved.

Information and More Information!

amazon.com	Hello. Sign in Your Amazon	to get personalized recommend n.com 🚺 Today's Deals 0	ations. New customer? Gifts & Wish Lists Git	Start here. It Cards Your	FREE 2-Day Shipping: See details Your Digital Items Your Account Help				
Shop All Departments 🛛 😪	Search Bo	ooks 主		o	갂 Cart	Wish List 💌			
Books	Advanced Searc	ch Browse Subjects New Releases	s Bestsellers The New	York Times® Bestsellers Libros	en español Bargai	in Books Textbooks			
Click to LOOK	vices n the Veb	Weaving Servic Wide Web [Hard Irwin King (Editor), Ric Be the first to review this List Price: \$99.00 Price: \$79.11 & Saver Shi You Save: \$19.89 (20) In Stock. Ships from and sold by Only 2 left in stockord Want it delivered Thu and 19 minutes, and ch 18 new from \$14.62	ces and People dcover] ardo Baeza-Yates (Edit item Like (0) k this item ships for ipping. Details 0%) Amazon.com. Gift-w der soon (more on the ursday, July 21? Orde hoose One-Day Shippi 13 used from \$14.62	on the World or) FREE with Super rap available. way). r it in the next 0 hours ng at checkout. Details	Quantity Add Sign in to turn of Add FREE Tw Amazon Pri required. Sig check out Add to Add to More Buy 31 used & n	to Cart or on 1-Click ordering. or to Cart with ro-Day Shipping ime Free Trial on up when you Learn More Wish List ing Choices ew from \$14.62			
Share your own custom	ner images	FREE Two-Da	ay Shipping for Student	s. <u>Learn more</u>	Have one to se	II? Sell yours here			

Customers Who Bought This Item Also Bought

Today's Recommendations For You

Here's a daily sample of items recommended for you. Click here to see all recommendations.

Invincible v ~ Michael Jackson

In Search of Sunrise, Vol. 7: Asia v ~ DJ Tiesto (53) \$15.99

Fallen → ~ Evanescence

Page 1 of 25

YAHOO! MOVIES

My Movies: gabe_ma Edit Profile

Recommendations For You

Movies in Theaters: 94089

Burn After Reading (R) Showtimes & Tickets | Add to My Lists

Yahoo! Users: B- 4794 ratings The Critics: B 14 reviews

🔞 Don't Recommend Again 🕄 Seen It? Rate It!

😢 Don't Recommend Again 😒 Seen It? Rate It!

B+ 13 reviews

😳 Don't Recommend Again 😳 Seen It? Rate It!

Vicky Cristina Barcelona (PG-13)

Showtimes & Tickets | Add to My Lists

Yahoo! Users: B 1923 ratings

The Critics:

Receive Recommendations by Email

Pride and Glory (R) Showtimes & Tickets | Add to My Lists

Yahoo! Users: A- 59 ratings The Critics: C+ 6 reviews

🔞 Don't Recommend Again 😳 Seen It? Rate It!

Yahoo! Users: B 3229 ratings The Critics: C 12 reviews

🔞 Don't Recommend Again 🕄 Seen It? Rate It!

Yahoo! Users: B+ 953 ratings The Critics: B- 10 reviews

😢 Don't Recommend Again 😳 Seen It? Rate It!

See All Recommendations

On The Menu

- Introduction
- Social Recommendation Models
 - Social graph
 - Social ensemble
 - Social distrust
 - Website recommendation
- Multi-centered Gaussian Location Recommendation Model
- Conclusion

Basic Approaches

- Content-based Filtering
 - Recommend items based on key-words
 - More appropriate for information retrieval
- Collaborative Filtering (CF)
 - Look at users with similar rating styles
 - Look at similar items for each item

Underling assumption: personal tastes are correlated--Active users will prefer those items which other similar users prefer!

Framework

- The tasks
 - Find the unknown rating!
 - Which item should be recommended?

Social Recommender Systems

- Introduction
- Collaborative Filtering
- Trust-aware Recommender Systems
- Social-based Recommender Systems

Collaborative Filtering

- Memory-based (Neighborhood-based)
 - User-based
 - Item-based
- Model-based
 - Clustering Methods
 - Bayesian Methods
 - Matrix Factorization
 - etc.

User-User Similarity

ltems

ltems

ltems

ltems

ltems

- Predict the ratings of active users based on the ratings of similar users found in the user-item matrix
 - Pearson correlation coefficient

$$w(a,i) = \frac{\sum_{j} (r_{aj} - \bar{r}_a) (r_{ij} - \bar{r}_i)}{\sqrt{\sum_{j} (r_{aj} - \bar{r}_a)^2 \sum_{j} (r_{ij} - \bar{r}_i)^2}} \quad j \in I(a) \cap I(i)$$

• Cosine measure

Nearest Neighbor Approaches

[Sarwar, 00a]

Figure 1: Three main parts of a Recommender System.

- Identify highly similar users to the active one
 - All with a measure greater than a threshold
 - Best K ones
- Prediction $r_{aj} = \bar{r}_a + \frac{\sum_i w(a,i)(r_{ij} \bar{r}_i)}{\sum_i w(a,i)}$

Collaborative Filtering

- Memory-based Method (Simple)
 - User-based Method [Xue et al., SIGIR '05]
 - Item-based [Deshpande et al., TOIS '04]
- Model-based (Robust)
 - Clustering Methods [Hkors et al, CIMCA '99]
 - Bayesian Methods [Chien et al., IWAIS '99]
 - Aspect Method [Hofmann, SIFIR '03]
 - Matrix Factorization [Sarwar et al., WWW '01]

Collaborative Filtering

- Memory-based (Neighborhood-based)
 - User-based
 - Item-based
- Model-based
 - Clustering Methods
 - Bayesian Methods
 - Matrix Factorization
 - etc.

Item-Item Similarity

- Search for similarities among items
- Item-Item similarity is more stable than user-user similarity

Correlation-based Methods

- Same as in user-user similarity but on item vectors
- Pearson correlation coefficient
 - Look for users who rated both items

$$s_{ij} = \frac{\sum_{u} (r_{uj} - \bar{r}_j) (r_{ui} - \bar{r}_i)}{\sqrt{\sum_{u} (r_{uj} - \bar{r}_j)^2 \sum_{u} (r_{ui} - \bar{r}_i)^2}}$$

• u: users rated both items

Correlation-based Method

[Sarwar, 2001]

• Calculate item similarity, then determine its k-most similar items

 Predict rating for a given user-item pair as a weighted sum over similar items that he rated

Traditional Methods

- Memory-based Methods (Neighborhood-based Method)
 - Pearson Correlation Coefficient
 - User-based, Item-based
 - Etc.
- Model-based Method
 - Matrix Factorizations
 - Etc.

Recent Developments in Social and Location Recommendations, Irwin King	
CCF ADL 39 on Social Networks and Mining, August 3-5, 2013, Beijing, China	

	v_1	v_2	v_3	v_4	v_5	v_6
<i>u</i> ₁		5	2		3	
<i>u</i> ₂	4			3		4
<i>u</i> ₃			2			2
<i>u</i> ₄	5			3		
<i>u</i> ₅		5	5			3

User-based Method

Items

Collaborative Filtering

- Memory-based (Neighborhood-based)
 - User-based
 - Item-based
- Model-based
 - Clustering Methods
 - Bayesian Methods
 - Matrix Factorization
 - etc...

	i_1	i_2	i3	i4	i _s	i ₆	i,	i ₈		i_1	i_2	i ₃	i4	is	i ₆	i_{γ}	i ₈
u_1	5	2		3		4			u_1	5	2	2.5	3	4.8	4	2.2	4.8
<i>u</i> ₂	4	3			5				u_2	4	3	2.4	2.9	5	4.1	2.6	4.7
<i>u</i> ₃	4		2				2	4	u_3	4	1.7	2	3.2	3.9	3.0	2	4
24									264	4.8	2.1	2.7	2.6	4.7	3.8	2.4	4.9
u _s	5	1	2		4	3			u _s	5	1	2	3.4	4	3	1.5	4.6
<i>u</i> ₆	4	3		2	4		3	5	246	4	3	2.9	2	4	3.4	3	5

	$1.55\ 1.22$	0.37	0.81	0.62	-0.01		1.00	-0.05	-0.24	0.26	1.28	0.54	-0.31	0.52
	$0.36\ 0.91$	1.21	0.39	1.10	0.25		0.19	-0.86	-0.72	0.05	0.68	0.02	-0.61	0.70
U =	$0.59\ 0.20$	0.14	0.83	0.27	1.51	V =	0.49	0.09	-0.05	-0.62	0.12	0.08	0.02	1.60
	$0.39\ 1.33$	-0.43	0.70	-0.90	0.68		-0.40	0.70	0.27	-0.27	0.99	0.44	0.39	0.74
	$1.05\ 0.11$	0.17	1.18	1.81	0.40		1.49	-1.00	0.06	0.05	0.23	0.01	-0.36	0.80

- Matrix Factorization in Collaborative Filtering
 - To fit the product of two (low rank) matrices to the observed rating matrix
 - To find two latent user and item feature matrices
 - To use the fitted matrix to predict the unobserved ratings

- Optimization Problem
 - Given a $m \times n$ rating matrix R, to find two matrices $U \in \mathbb{R}^{l \times m}$ and $V \in \mathbb{R}^{l \times n}$,

$$R \approx U^T V,$$

where $l < \min(m, n)$, is the number of factors

- Models
 - SVD-like Algorithm
 - Regularized Matrix Factorization (RMF)
 - Probabilistic Matrix Factorization (PMF)
 - Non-negative Matrix Factorization (NMF)

• ...

SVD-like Algorithm

Minimizing

$$\frac{1}{2}||R - U^T V||_F^2,$$

• For collaborative filtering

$$\min_{U,V} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_i^T V_j)^2$$

where I_{ij} is the indicator function that is equal to 1 if user u_i rated item v_j and equal to 0 otherwise.

Regularized Matrix Factorization

 Minimize the loss based on the observed ratings with regularization terms to avoid over-fitting problem

$$\min_{U,V} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_i^T V_j)^2 + \underbrace{\frac{\lambda_1}{2} ||U||_F^2 + \frac{\lambda_2}{2} ||V||_F^2}_{\mathsf{Regularization terms}}$$

where $\lambda_1, \lambda_2 > 0$.

• The problem can be solved by simple gradient descent algorithm.

Regularized Matrix Factorization

- Algorithm for RMF
 - Not convex & local optimal
 - Gradient-decent algorithm
 - Gradient computation with randomly initialized U and V

$$\frac{\partial L}{\partial u_{il}} = \lambda u_{il} - \sum_{j \mid (i,j) \in S} (y_{ij} - \widehat{y_{ij}}) v_{jl}$$

$$\frac{\partial L}{\partial v_{il}} = \lambda v_{il} - \sum_{j \mid (i,j) \in S} (y_{ij} - \widehat{y_{ij}}) u_{jl}$$

• Update *U* and *V* alternatively

$$u_{il}^{(t+1)} = u_{il}^{(t)} - \tau \frac{\partial L}{\partial u_{il}^{(t)}}$$

$$v_{jl}^{(t+1)} = v_{jl}^{(t)} - \tau \frac{OL}{\partial v_{jl}^{(t)}}$$

Probabilistic Matrix Factorization

- PMF
 - Define a conditional distribution over the observed ratings as:

Probabilistic Matrix Factorization

- PMF
 - Assume zero-mean spherical Gaussian priors on user and item feature:

Probabilistic Matrix Factorization

• PMF

Bayesian inference

RMF and **PMF**

• PMF is the probabilistic interpretation of RMF

• PMF and RMF have the same optimization objective function

Non-negative Matrix Factorization

- NMF
 - Non-negative constraints on all entries of matrices U and V

Non-negative Matrix Factorization

- NMF
 - Given an observed matrix Y, to find two non-negative matrices U and V
 - Two types of loss functions
 - Squared error function

$$\sum_{ij} \left(R_{ij} - U_i^T V_j \right)^2$$

• Divergence

$$D(R||U^T V) = \sum_{ij} \left(R_{ij} \log \frac{R_{ij}}{U_i^T V_j} - R_{ij} + U_i^T V_j \right)$$

Solving by multiplicative updating rules

Social Recommendation Using Probabilistic Matrix Factorization

[Ma et al., CIKM2008]

Challenges

Traditional recommender systems ignore the social connections between users

Recommendations from friends

Motivations

• "Yes, there is a correlation - from social networks to personal behavior on the web"

Parag Singla and Matthew Richardson (WWW'08)

- Analyze the who talks to whom social network over 10 million people with their related search results
- People who chat with each other are more likely to share the same or similar interests

• To improve the recommendation accuracy and solve the data sparsity problem, users' social network should be taken into consideration

Problem Definition

Social Trust Graph

	v_1	v_2	v_3	v_4	v_5	v_6
<i>u</i> ₁		5	2		3	
<i>u</i> ₂	4			3		4
<i>u</i> ₃			2			2
u_4	5			3		
<i>u</i> ₅		5	5			3

User-Item Rating Matrix

User-Item Matrix Factorization

R. Salakhutdinov and A. Mnih (NIPS'08) Recent Developments in Social and Location Recommendations, Irwin King CCF ADL 39 on Social Networks and Mining, August 3-5, 2013, Beijing, China

SoRec

	v_1	v_2	v_3	v_4	v_5	v_6
<i>u</i> ₁		5	2		3	
<i>u</i> ₂	4			3		4
<i>u</i> ₃			2			2
<i>u</i> ₄	5			3		
<i>u</i> ₅		5	5			3

SoRec

SoRec

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial U_i} &= \sum_{j=1}^n I_{ij}^R g'(U_i^T V_j) (g(U_i^T V_j) - r_{ij}) V_j \\ &+ \lambda_C \sum_{j=1}^m I_{ik}^C g'(U_i^T Z_k) (g(U_i^T Z_k) - c_{ik}^*) Z_k + \lambda_U U_i, \\ \frac{\partial \mathcal{L}}{\partial V_j} &= \sum_{i=1}^m I_{ij}^R g'(U_i^T V_j) (g(U_i^T V_j) - r_{ij}) U_i + \lambda_V V_j, \\ \frac{\partial \mathcal{L}}{\partial Z_k} &= \lambda_C \sum_{i=1}^m I_{ik}^C g'(U_i^T Z_k) (g(U_i^T Z_k) - c_{ik}^*) U_i + \lambda_Z Z_k, \end{aligned}$$

Recent Developments in Social and Location Recommendations, Irwin King CCF ADL 39 on Social Networks and Mining, August 3-5, 2013, Beijing, China

i=1

Complexity Analysis

- For the Objective Function $O(\rho_R l + \rho_C l)$
- For $\frac{\partial \mathcal{L}}{\partial U}$ the complexity is $O(\rho_R l + \rho_C l)$
- For $\frac{\partial \mathcal{L}}{\partial V}$ the complexity is $O(\rho_R l)$
- For $\frac{\partial \mathcal{L}}{\partial Z}$ the complexity is $O(\rho_C l)$
- In general, the complexity of our method is linear with the observations in these two matrices

Disadvantages of SoRec

• Lack of interpretability

 Does not reflect the realworld recommendation process

SoRec

Learning to Recommend with Social Trust Ensemble

[Ma et al., SIGIR2009]

Ist Motivation

• Users have their own characteristics, and they have different tastes on different items, such as movies, books, music, articles, food, etc.

2nd Motivation

• Users can be easily influenced by the friends they trust, and prefer their friends' recommendations.

User-Item Matrix Factorization

[R. Salakhutdinov, et al., NIPS2008]

Recommendations by Trusted Friends

$$\begin{aligned} \widehat{R}_{ik} &= \frac{\sum_{j \in \mathcal{T}(i)} R_{jk} S_{ij}}{|\mathcal{T}(i)|} \\ \widehat{R}_{ik} &= \sum_{j \in \mathcal{T}(i)} R_{jk} S_{ij} \\ p(R|S, U, V, \sigma_R^2) &= \\ &\prod_{i=1}^{m} \prod_{j=1}^{n} \left[\mathcal{N} \left(R_{ik} | g(\sum_{k \in \mathcal{T}(i)} S_{ik} U_k^T V_j), \sigma_S^2 \right) \right]^{I_{ij}^R} \end{aligned}$$

Recommendation with Social Trust Ensemble

$$\prod_{i=1}^{m} \prod_{j=1}^{n} \left[\mathcal{N}\left(R_{ij} | g(\alpha U_i^T V_j + (1-\alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_k^T V_j), \sigma^2 \right) \right]^{I_{ij}^R}$$

Recommendation with Social Trust Ensemble

$$\mathcal{L}(R, S, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(\alpha U_{i}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T} V_{j}))^{2} + \frac{\lambda_{U}}{2} \|U\|_{F}^{2} + \frac{\lambda_{V}}{2} \|V\|_{F}^{2},$$
(15)

 $+ \Lambda U U_i,$

Complexity

 In general, the complexity of this method is linear with the observations the user-item matrix

Epinions Dataset

- 51,670 users who rated 83,509 items with totally
 631,064 ratings
- Rating Density 0.015%
- The total number of issued trust statements is 511,799

Metrics

Mean Absolute Error and Root Mean Square Error

$$MAE = \frac{\sum_{i,j} |r_{i,j} - \hat{r}_{i,j}|}{N}$$

$$RMSE = \sqrt{\frac{\sum_{i,j} (r_{i,j} - \hat{r}_{i,j})^2}{N}}$$

Comparisons

Table 3: Performance Comparisons (A Smaller MAE or RMSE Value Means a Better Performance)

Training Data	Metrics	Dimensionality $= 5$			Dimensionality $= 10$				
		Trust	PMF	SoRec	RSTE	Trust	\mathbf{PMF}	SoRec	RSTE
00%	MAE	0.9054	0.8676	0.8484	0.8377	0.9039	0.8651	0.8426	0.8367
3070	RMSE	1.1959	1.1575	1.1418	1.1109	1.1917	1.1544	1.1365	1.1094
80%	MAE	0.9221	0.8951	0.8654	0.8594	0.9215	0.8886	0.8605	0.8537
	RMSE	1.2140	1.1826	1.1517	1.1346	1.2132	1.1760	1.1586	1.1256

PMF --- R. Salakhutdinov and A. Mnih (NIPS 2008)

SoRec --- H. Ma, H. Yang, M. R. Lyu and I. King (CIKM 2008)

Trust, RSTE --- H. Ma, I. King and M. R. Lyu (SIGIR 2009)

Comparisons

Table III: Performance Comparisons (A Smaller MAE or RMSE Value Means a Better Performance)

Training	Motrico			Dime	nsionality	r = 5		
Data	wietrics	UserMean	ItemMean	NMF	PMF	Trust	SoRec	RSTE
00%	MAE	0.9134	0.9768	0.8738	0.8676	0.9054	0.8442	0.8377
9070	RMSE	1.1688	1.2375	1.1649	1.1575	1.1959	1.1333	1.1109
80%	MAE	0.9285	0.9913	0.8975	0.8951	0.9221	0.8638	0.8594
0070	RMSE	1.1817	1.2584	1.1861	1.1826	1.2140	1.1530	1.1346
		A						
Training	Motrice			Dimen	sionality	= 10		
Training Data	Metrics	UserMean	ItemMean	Dimen NMF	sionality PMF	= 10 Trust	SoRec	RSTE
Training Data	Metrics MAE	UserMean 0.9134	ItemMean 0.9768	Dimen NMF 0.8712	sionality PMF 0.8651	= 10 Trust 0.9039	SoRec 0.8404	RSTE 0.8367
Training Data 90%	Metrics MAE RMSE	UserMean 0.9134 1.1688	ItemMean 0.9768 1.2375	Dimen NMF 0.8712 1.1621	sionality PMF 0.8651 1.1544	= 10 Trust 0.9039 1.1917	SoRec 0.8404 1.1293	RSTE 0.8367 1.1094
Training Data 90%	Metrics MAE RMSE MAE	UserMean 0.9134 1.1688 0.9285	ItemMean 0.9768 1.2375 0.9913	Dimen NMF 0.8712 1.1621 0.8951	sionality PMF 0.8651 1.1544 0.8886	= 10 Trust 0.9039 1.1917 0.9215	SoRec 0.8404 1.1293 0.8580	RSTE 0.8367 1.1094 0.8537

NMF ---- D. D. Lee and H. S. Seung (Nature 1999)
PMF ---- R. Salakhutdinov and A. Mnih (NIPS 2008)
SoRec ---- H. Ma, H. Yang, M. R. Lyu and I. King (CIKM 2008)
Trust, RSTE ---- H. Ma, I. King and M. R. Lyu (SIGIR 2009)

Performance on Different Users

• Group all the users based on the number of observed ratings in the training data

6 classes: "1 - 10", "11 - 20", "21 - 40", "41 - 80", "81 - 160", "> 160", "160"

Performance on Different Users

CCF ADL 39 on Social Networks and Mining, August 3-5, 2013, Beijing, China

Impact of Parameter Alpha

Impact of Parameter α (Dimensionality = 10)

MAE and RMSE Changes with Iterations

90% as Training Data

Further Discussion of SoRec

Improving Recommender Systems Using Social Tags

10,000,054 ratings, 95,580 tags

Further Discussion of SoRec

• MAE

Table V: MAE comparison with other approaches on MovieLens dataset (A smaller MAE value means a better performance)

Methods		80% Training	50% Training	30% Training	10% Training
User Mean		0.7686	0.7710	0.7742	0.8234
Item Mean		0.7379	0.7389	0.7399	0.7484
	SVD	0.6390	0.6547	0.6707	0.7448
5D	PMF	0.6325	0.6542	0.6698	0.7430
51	SoRecUser	0.6209	0.6419	0.6607	0.7040
	SoRecItem	0.6199	0.6407	0.6395	0.7026
	SVD	0.6386	0.6534	0.6693	0.7431
10D	PMF	0.6312	0.6530	0.6683	0.7417
	SoRecUser	0.6197	0.6408	0.6595	0.7028
	SoRecItem	0.6187	0.6395	0.6584	0.7016

Further Discussion of SoRec

• RMSE

Table VI: RMSE comparison with other approaches on MovieLens dataset (A smaller RMSE value means a better performance)

Methods		80% Training	50% Training	30% Training	10% Training
User Mean		0.9779	0.9816	0.9869	1.1587
Item Mean		0.9440	0.9463	0.9505	0.9851
	SVD	0.8327	0.8524	0.8743	0.9892
5D	PMF	0.8310	0.8582	0.8758	0.9698
50	SoRecUser	0.8121	0.8384	0.8604	0.9042
	SoRecItem	0.8112	0.8370	0.8591	0.9033
	SVD	0.8312	0.8509	0.8728	0.9878
10D	PMF	0.8295	0.8569	0.8743	0.9681
	SoRecUser	0.8110	0.8372	0.8593	0.9034
	SoRecItem	0.8097	0.8359	0.8578	0.9019

Further Discussion of RSTE

Relationship with Neighborhood-based methods

- The trusted friends are actually the explicit neighbors
- We can easily apply this method to include implicit neighbors
- Using PCC to calculate similar users for every user

Recommend with Social Distrust

[Ma et al., RecSys2009]

Trust vs. Social

- Trust-aware
 - Trust network: unilateral relations
 - Trust relations can be treated as "similar" relations
 - Few datasets available on the Web

- Social-based
 - Social friend network: mutual relations
 - Friends are very diverse, and may have different tastes
 - Many Web sites have social network implementation

Distrust

- Users' distrust relations can be interpreted as the "dissimilar" relations
 - On the web, user U_i distrusts user U_d indicates that user U_i disagrees with most of the opinions issued by user U_d .

Distrust

$$\max_{U} \frac{1}{2} \sum_{i=1}^{m} \sum_{d \in \mathcal{D}^{+}(i)} S_{id}^{\mathcal{D}} \| U_{i} - U_{d} \|_{F}^{2}$$

$$\min_{U,V} \mathcal{L}_{\mathcal{D}}(R, S^{\mathcal{D}}, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(U_{i}^{T}V_{j}))^{2} \\ + \frac{\beta}{2} \sum_{i=1}^{m} \sum_{d \in \mathcal{D}^{+}(i)} (-S_{id}^{\mathcal{D}} ||U_{i} - U_{d}||_{F}^{2}) \\ + \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2}.$$

Trust

- Users' trust relations can be interpreted as the "similar" relations
 - On the web, user U_i trusts user U_t indicates that user U_i agrees with most of the opinions issued by user U_t .

Trust

$$\min_{U} \frac{1}{2} \sum_{i=1}^{m} \sum_{t \in \mathcal{T}^+(i)} S_{it}^{\mathcal{T}} \| U_i - U_t \|_F^2$$

$$\min_{U,V} \mathcal{L}_{T}(R, S^{T}, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(U_{i}^{T}V_{j}))^{2} + \frac{\alpha}{2} \sum_{i=1}^{m} \sum_{t \in T^{+}(i)} (S_{it}^{T} ||U_{i} - U_{t}||_{F}^{2}) + \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2}.$$

Web Site Recommendation

[Ma et al., SIGIR 2011]

Traditional Search Paradigm

Web Images Videos Sh	opping News Maps More MSN Hotmail	Walnut Creek, California Preferences						
bing	sigir	Hi Irwin, Bing just got better with your Facebook friends. Disable - Learn More						
Web	Web News Images More V							
RELATED SEARCHES	ALL RESULTS 1-10 of 255,000 results · Advanced	Bing Rewards						
Special Inspector General for Iraq Reconstruction SIGIR Reports SIGIR Poster	Welcome to SIGIR Home An Iraqi fisherman pushes his boat off-shore to depart on his daily fishing trip. View the Report. www.sigir.mil	Earn Rewards with Bing Join Bing Rewards for free and earn 250 credits.						
SIGIR List SIGIR 2011 SIGIR 10 SIGIR 2010 Registration	ACM SIGIR Special Interest Group on Information Retrieval Home Page Welcome to the ACM SIGIR Web site. ACM SIGIR addresses issues ranging from theory to user demands in the application of computers to the acquisition, organization www.sigir.org							
SIGIR 2009 Proceedings	home [ACM SIGIR 2010] ACM-SIGIR 2010 was held at UniMail, Geneva, Switzerland between 19th and 23rd of July 2010. Thanks to all the participants!!! The story continues with ACM-SIGIR 2011. www.sigir2010.org							
Search more to see your history	Welcome to The 34th Annual ACM SIGIR Conference Important Dates. 17 Jan 2011 : Abstracts for full research papers due; 24 Jan 2011 : Full research paper submissions due; 28 Jan 2011 : Workshop proposals due							
Clear all · Turn off	About SIGIR							
 ARROW BY DATE All results Past 24 hours 	About SIGIR The Office of the Special Inspector General for Iraq Reconstruction (SIGIR) is the successor to the Coalition Provisional Authority Office of www.sigir.mil/about/index.html							
Past week Past month	SIGIR 2009 Archive SIGIR'09 The SIGIR 2009 conference ran July 19-23, 2009, in Boston, Massachusetts, at the Sheraton Boston Hotel and Northeastern University. The conference was chock full of sigir2009.org							

"Search" to "Discovery"

NEW Corp - Extended Service contracts, Extended warranties

NEW delivers innovative extended service plans, also known as extended warranties, and customizable lifecycle solutions for the entire consumer ownership experience ... https://www.newcorp.com

areers	Consumer
ontact Us	Manufacturer
oout Us	Wireless
ervice Plan FAQs	Customer Care
now more reculte from	

News Corporation

07.15.2011. Les Hinton, Chief Executive Officer of Dow Jones & Company and Publisher ... View All News Corp. Press Releases >> www.newscorp.com

NEW Corp :: Careers

Be Part of Something **NEW**. Founded in 1983, **NEW** has built a world-class organization dedicated to providing innovative and comprehensive customer care solutions and delivering ... https://www.newcorp.com/index.php/careers

Challenges in Web Site Recommendation

• Infeasible to ask Web users to explicitly rate Web site

 Not all the traditional methods can be directly applied to the Web site recommendation task

• Can only take advantages of implicit user behavior data

Motivations

• A Web user's preference can be represented by how frequently a user visits each site

 Higher visiting frequency on a site means heavy information needs while lower frequency indicates less interests

 User-query issuing frequency data can be used to refine a user's preference

Using Clicks as Ratings

ID	Query	URL
358	facebook	http://www.facebook.com
358	rww	http://www.readwriteweb.com
3968	iphone4	http://www.apple.com
3968	ipad	http://www.apple.com
	•••	•••

			V	Veb si	tes						Qu	eries		
		v_1	\mathcal{V}_2	v_3	\mathcal{V}_4	V_5	v_6			Z_1	Z_2	Z_3	Z_4	Z_5
Ŋ	u_1		68	1		15		Ś	u_1	12		5	6	
lser	u_2	42			13		24	Iser	<i>u</i> ₂		23		5	1
/eb 1	<i>u</i> ₃		72	12		11	2	ebu	<i>u</i> ₃		14		35	18
\geq	u_4	15			33			M	u_4	25		11	4	
	<i>u</i> ₅		85	45			63		<i>u</i> ₅		12	5		24

Matrix Factorization

$$\min_{U,V} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_i V_j^T)^2 + \frac{\lambda_1}{2} ||U||_F^2 + \frac{\lambda_2}{2} ||V||_F^2$$

$$p(R|U, V, \sigma_R^2) = \prod_{i=1}^m \prod_{j=1}^n \left[\mathcal{N}\left(R_{ij} | U_i V_j^T, \sigma_R^2 \right) \right]^{I_{ij}}$$

$$p(U|\sigma_U^2) = \prod_{i=1}^m \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I})$$

$$p(V|\sigma_V^2) = \prod_{j=1}^n \mathcal{N}(V_j|0, \sigma_V^2 \mathbf{I})$$

Probabilistic Factor Model

- 1. Generate $u_{ik} \sim \text{Gamma}(\alpha_k, \beta_k), \forall k$.
- 2. Generate $v_{jk} \sim \text{Gamma}(\alpha_k, \beta_k), \forall k$.
- 3. Generate y_{ij} occurrences of item or event j from user i with outcome $y_{ij} = \sum_{k=1}^{d} u_{ik} v_{jk}$.
- 4. Generate $f_{ij} \sim \text{Poisson}(y_{ij})$.

$$p(U|\boldsymbol{\alpha},\boldsymbol{\beta}) = \prod_{i=1}^{m} \prod_{k=1}^{d} \frac{u_{ik}^{\alpha_k - 1} \exp(-u_{ik}/\beta_k)}{\beta_k^{\alpha_k} \Gamma(\alpha_k)}$$

$$p(V|\boldsymbol{\alpha},\boldsymbol{\beta}) = \prod_{j=1}^{n} \prod_{k=1}^{d} \frac{v_{jk}^{\alpha_k - 1} \exp(-v_{jk}/\beta_k)}{\beta_k^{\alpha_k} \Gamma(\alpha_k)}$$

$$p(F|Y) = \prod_{i=1}^{m} \prod_{j=1}^{n} \frac{y_{ij}^{f_{ij}} \exp(-y_{ij})}{f_{ij}!}$$

$$p(U, V | F, \boldsymbol{\alpha}, \boldsymbol{\beta}) \propto p(F | Y) p(U | \boldsymbol{\alpha}, \boldsymbol{\beta}) p(V | \boldsymbol{\alpha}, \boldsymbol{\beta})$$
$$\mathcal{L}(U, V; F) = \sum_{i=1}^{m} \sum_{k=1}^{d} ((\alpha_{k} - 1) \ln(u_{ik}/\beta_{k}) - u_{ik}/\beta_{k})$$
$$+ \sum_{j=1}^{n} \sum_{k=1}^{d} ((\alpha_{k} - 1) \ln(v_{jk}/\beta_{k}) - v_{jk}/\beta_{k})$$
$$+ \sum_{i=1}^{m} \sum_{j=1}^{n} (f_{ij} \ln y_{ij} - y_{ij}) + \text{const.}$$

Probabilistic Factor Model

$$\mathcal{L}(U,V;F) = \sum_{i=1}^{m} \sum_{k=1}^{d} ((\alpha_{k}-1)\ln(u_{ik}/\beta_{k}) - u_{ik}/\beta_{k}) + \sum_{j=1}^{n} \sum_{k=1}^{d} ((\alpha_{k}-1)\ln(v_{jk}/\beta_{k}) - v_{jk}/\beta_{k}) + \sum_{i=1}^{m} \sum_{j=1}^{n} (f_{ij}\ln y_{ij} - y_{ij}) + \text{const.}$$

$$u_{ik} \leftarrow u_{ik} \frac{\sum_{j=1}^{n} (f_{ij} v_{jk} / y_{ij}) + (\alpha_k - 1) / u_{ik}}{\sum_{j=1}^{n} v_{jk} + 1 / \beta_k}$$
$$v_{jk} \leftarrow v_{jk} \frac{\sum_{i=1}^{m} (f_{ij} u_{ik} / y_{ij}) + (\alpha_k - 1) / v_{jk}}{\sum_{i=1}^{m} u_{ik} + 1 / \beta_k}$$

Collective Probabilistic Factor Model

Dataset

- Anonymous logs of Web sites visited by users who opted-in to provide data through browser toolbar
- URLs of all the Web sites are truncated to the site level
- After pruning one month data, we have 165,403 users, 265,367 URLs and 442,598 queries
- In user-site frequency matrix 2,612,016 entries, while in user-query frequency matrix 833,581 entries

Table 2: Statistics of User-Site and User-Query Frequency Matrices

Statistics	User-Site Frequency	User-Query Frequency
Min. Num.	4	10
Max. Num.	9,969	4,693
Avg. Num.	20.33	23.05

Performance Comparison

Table 3: Performance Comparison (Dimensionality = 10)

Training Data	Metrics	UserMean	SiteMean	SVD	PMF	NMF	GaP	PFM	CPFM
90%	NMAE	2.246	1.094	0.488	0.476	0.465	0.440	0.432	0 427
	Improve	80.98%	60.96%	12.50%	10.29%	8.17%	2.95%	0.432	0.421
	NRMSE	3.522	2.171	0.581	0.570	0.554	0.532	0 529	0 520
	Improve	85.24%	76.05%	10.50%	8.77%	6.14%	2.26%	0.525	0.520
80%	NMAE	2.252	1.096	0.490	0.478	0.468	0.441	0.434	0 428
	Improve	80.99%	60.95%	12.65%	10.46%	8.55%	2.95%	0.404	0.420
	NRMSE	3.714	2.159	0.584	0.571	0.560	0.533	0.530	0 520
	Improve	86.00%	75.91%	10.96%	8.93%	7.14%	2.44%	0.000	0.520

Impact of Parameters

Figure 7: Impact of Parameter β_k in PFM

(b) NRMSE

0.3

Parameter β_ν

0.4

0.5

0.6

0<u></u>

2

3

4

(c) Gamma Distributions

0.52L

0.1

0.2

0.4

0.3

Parameter β_ν

(a) NMAE

0.5

0.6

0.42^L

0.1

0.2

Recent Developments in Social and Location Recommendations, Irwin King CCF ADL 39 on Social Networks and Mining, August 3-5, 2013, Beijing, China

7

8

5

х

6

9

10

Impact of Parameters

Figure 8: Impact of Parameter θ in CPFM

Location Recommendations

[Cheng et al., AAAI 2012]

Check Out on "Check-ins"

Location-based Social Networks (LBSNs)

Related Work

- POI recommendation on GPS trajectory logs
 - A collective matrix factorization method is applied on three matrices: location-activity, location-feature and activity-activity.
 [Zheng et al. 2010a]
 - A tensor factorization is conducted on the user-locationactivity relationship. [Zheng et al. 2010b]
- POI recommendation on LBSNs dataset
 - A unified memory-based framework including user similarity, social and geographical influence, in which geographical influence in modeled as power-law distribution. [Ye et al. 2011]
 - Two-center mixture Gaussian model proposed to model human mobility in LBSNs. [Cho et al. 2011]

Motivations

• Users have their personalized taste for different POIs.

• The check-in probability is sensitive to geographical influence.

Recent Developments in Social and Location CCF ADL 39 on Social Networks and Mining,

Observation #1

- Users tend to check-in around several centers
- Gaussian distribution to model check-ins at each center
- Inverse Distance Rule: check-in probability is inversely proportional to the distance to the nearest center

Observation #2

- Social information can help improve POI recommendation, but seems influence is limited
 - On average, overlap of a user's check-ins to his friends only about 9.6%
 - 90% users have only 20% common check-ins

Our Proposal

- Multi-center Gaussian Model (MGM) to capture geographical influence
- Propose a generalized fused matrix factorization framework to include social and geographical influences
- Experiments conducted on large-scale Gowalla dataset

Multi-center Gaussian Model

• Notations

- $-C_u$: multi-center set for user u
- $-f_{c_u}$: total frequency at center c_u for user u
- $\mathcal{N}(l|\mu_{c_u}, \Sigma_{c_u})$: the pdf of Gaussian distribution, μ_{c_u} and Σ_{c_u} denote the mean and covariance matrices of regions around center c_u
- The probability a user u visiting a location l given C_u is defined as:

Multi-center Discovery Algorithm

10:

11:

12:

13:

15:

16:

18:

• A greedy clustering algorithm is proposed due to Pareto principle (top 20 locations cover about 80% check-ins)


```
for all user i in the user set \mathcal{U} do
123456789
          Rank all check-in locations in |\mathcal{L}| according to visiting frequency
          \forall l_k \in L, set l_k.center = -1;
          Center_list = \emptyset; center_no = 0;
          for i = 1 \rightarrow |L| do
               if l_i.center == -1 then
                    center_no++; Center = \emptyset; Center.total_freg = 0;
                    Center.add(I_i); Center.total_freq += I_i.freq;
                    for j = i + 1 \rightarrow |L| do
                        if l_j.center == -1 and dist(l_i, l_j) \leq d then
                             li.center = center_no; Center.add(li);
                             Center.total_freq += I_i.freq;
                        end if
                    end for
                   if Center.total_freq \geq |u_i|.total_freq * \theta then
                        Center_list.add(Center);
                    end if
               end if
          end for
          RETURN Center_list for user i:
```


Fused Framework

- Probabilistic Matrix Factorization (PMF) models users' **preference** on locations: $F \approx U^T L$, and the frequency will be converted to [0, 1] by $g(x) = 1/(1 + \exp(-x))$.
- PFM with **Social Regularization** (PMFSR) [Ma et al. 2011b]:

$$\min_{U,L} \Omega(U,L) = \sum_{i=1}^{|\mathcal{U}|} \sum_{j=1}^{|\mathcal{L}|} I_{ij} (F_{ij} - U_i^T L_j)^2 + \beta \sum_{i=1}^{|\mathcal{U}|} \sum_{f \in \mathcal{F}(i)} Sim(i,f) ||U_i - U_f||_F^2 + \lambda_1 ||U||_F^2 + \lambda_2 ||L||_F^2,$$

- MGM models geographical influence
- We can fuse them together:

 $P_{ul} = \lambda P(F_{ul}) + (1 - \lambda) P(l|C_u)$, where $P(F_{ul}) \propto U_u^T L_l$.

Social Geographical Influence Influence

Concluding Remarks

- Both social and location recommendation play a significant role in the social web!
- Social recommendation extends traditional models and techniques by using social graphs, ensembles, distrust relationships, clicks, etc.
- Fusing of social behavior information, e.g., media consumption patters, temporal relationships, etc.
- Location recommendation follows a similar path with new data and features.

深圳市富媒体大数据重点实验室

典型应用

Looking for People with Bright Ideas

- Postdoc
- PhD Students
- Engineers
- Machine learning, social computing, data mining/analytics, Big Data, etc.
 - Semi-supervised learning, on-line learning, active learning, multiple kernel learning, feature selection, matrix factorization, large margin classifiers, kernel methods, etc.
 - Recommender systems, Q&A, human computation, crowdsourcing, user profiling, user modeling, graph algorithms, computational advertising, etc.
 - Scalable algorithms, mobile apps, cloud computing, open sourced projects, etc.

ACM RecSys 2013

The ACM Recommender System conference is the premier international forum for the presentation of new research results, systems and techniques in the broad field of recommender systems. Recommendation is a particular form of information filtering, that exploits past behaviours and user similarities to generate a list of information items that is personally tailored to an end-user's preferences. The seventh conference in this series, RecSys 2013, will bring together researchers and practitioners from academia and industry to present the latest results and identify new trends and challenges in providing recommendation components in a range of innovative application contexts. As RecSys brings together the main international research groups working on recommender systems, along with many of the world's leading e-commerce companies, in the last number of years, it has become the most important annual conference for the presentation and discussion of recommender system research. In addition to the main technical track, RecSys 2013 program will feature keynote and invited talks, tutorials covering state-of-the-art in this domain, a workshop program, an industrial track and a doctoral symposium.

ACM RECSYS 2013 (HONG KONG)

Tutorials

About the Conference	e
Registration	
Important Dates	
Call for Contributions	5
Program	
Keynotes	

CrowdRec 2013

Workshop on Crowdsourcing and Human Computation for Recommender Systems

Co-located with ACM RecSys 2013, Hong Kong, 12th October, 2013

Home	Submission	Committee	Programme			
Announcements 2013-07-18	112	Important Dates 26th July, 2013 (PDT) Submission due (Extended)				
2013-05-24 CrowdRec 2013 Website lau	J13.	16th August, 2013 Author notification				
Introduction		30th August, 2013 Camera-ready version due				
We are pleased to announce to computation for recommender broad spectrum of applications filtering, summarization, etc. in	ng and human ems we refer to as a mation valuation, se to social networking	12th October, 2013 CrowdRec 2013 Workshop				
and mobile applications. This researchers and practitioners computation technologies and recommendation systems. The human computation have been human interaction and information benefit the research of recommendation	Contacts General Inquiries Kuan-Ta Chen swc@iis.sinica.edu.tw Submission & Programme-related					
Call For Papers		Albert Au Yeung albertauyeung@gmail.com				

Overview

- Home
- Organization
- Contact
 Broomer
- Program

Partners

In conjunction with the 2013 IEEE International Conference on Big Data (IEEE Big Data 2013)

Workshop on Scalable Machine Learning: Theory and Applications

October 6, 2013, Santa Clara, CA, USA

Big Data are encountered in various areas, including Internet search, social networks, finance, business sectors, meteorology, genomics, connectomics, complex physics simulations, and biological and environmental research. The huge volume, high velocity, significant variety, and low veracity bring challenges to current machine learning techniques. It is desirable to scale up machine learning techniques for modeling and analyzing the big data from various domains.

The workshop aims to provide professionals, researchers, and technologists with a single forum where they can discuss and share the state-of-the-art of scalable machine learning technologies from theory and applications.

We thank the following experts for accepting our invitation to give plenary talks:

- Mikhail Bilenko, Microsoft research
- Carlos Guestrin, University of Washington
- Alek Kolcz, Twitter
- <u>Alex Smola</u>, Carnegie Mellon University

Topics of Interest

Topics of interest include, but not limited to:

- Distributed machine learning architectures
 - Data separation and integration techniques
 - Machine learning algorithms for GPUs
 - Machine learning algorithms for clouds
 - Machine learning algorithms for clusters

Recent Developments in Social and Location Recommendations, Irwin King CCF ADL 39 on Social Networks and Analysis, August 3-5, 2013, Beijing, China

SOCIAL MEDIA & CALL FOR BOOKS!

interactions and behaviors through the use of technologies and web services, e.g., hardware devices such as smart phones, tablets, RFID, etc., software services such as wikis, blogs, micro-blogs, social news, multimedia sharing sites, etc. Analyzing these technologically-enabled interactions in their social context will benefit information providers and information consumers. However, the large volume and scale of user-generated contents require effective modeling methods

<u>Irwin King</u>

Series Editor:

Prof. King is Associate Editor of the IEEE Transactions on Neural Networks (TNN) and IEEE Computational Intelligence Magazine (CIM). He is a senior member of IEEE and a member of ACM, International Neural Network Society (INNS), and VP & Governing Board Member of the Asian Pacific Neural Network Assembly (APNNA). He serves the Neural Network Technical Committee (NNTC) and the Data Mining Technical Committee under the IEEE Computational Intelligence Society.

https://www.cse.cuhk.edu.hk/irwin.king/home

in@cse.cuhk.edu.hk

and efficient algorithms to handle these chalenging problems.

Pleas send Proposals to either the Series Editor or Directly to : LEONG Li-Ming Editor, CRC Press 240 Macpherson Road, #08-01, Pines Industrial Building, S'pore 348574 li.ming@tandf.com.sg Tel: (65) 67415166 x 115

Recent Developments in Social and Location Recommendations, Irwin King CCF ADL 39 on Social Networks and Analysis, August 3-5, 2013, Beijing, China

⑤ VeriGuide

- Similarity text detection system
- Developed at CUHK
- Promote and uphold academic honesty, integrity, and quality
- Support English, Traditional and Simplified Chinese
- Handle .doc, .txt, .pdf, .html, etc. file formats
- Generate detailed originality report including readability

Recent Developments in Social and Location Recommendations, Irwin King CCF ADL 39 on Social Networks and Mining, August 3-5, 2013, Beijing, China

VeriGuide Free Trial

http://www.cse.cuhk.edu.hk/~king

Recent Developments in Social and Location Recommendations, Irwin King CCF ADL 39 on Social Networks and Mining, August 3-5, 2013, Beijing, China

Acknowledgments

- Shouyuan Chan (Ph.D.)
- Chen Cheng (Ph.D.)
- Baichuan Li (Ph.D.)
- Guang Ling (Ph.D.)
- Haiqin Yang (Postdoc)
- Connie Yuen (Ph.D.)
- Hongyi Zhang (Ph.D.)
- Chao Zhou (Ph.D.)

- Patrick Lau
- Raymond Yeung

The Chinese University of Hong Kong

CUHK Excellence

 The only university in Hong Kong having Nobel Laureates as faculty. Four Distinguished Professors-at-Large.

Professor Yang Chen-Ning, Nobel Laureate in Physics

Professor Yau Shing-Tung, Fields Medalist

Professor Sir James A. Mirrlees, Nobel Laureate in Economic Sciences

Professor Andrew Yao, Turing Award Winner

 Nine academicians of Chinese Academy of Sciences and Chinese Academy of Engineering

> Recent Developments in Social and Location Recommendations, Irwin King CCF ADL 39 on Social Networks and Mining, August 3-5, 2013, Beijing, China

Q & A

Recent Developments in Social and Location Recommendations, Irwin King CCF ADL 39 on Social Networks and Mining, August 3-5, 2013, Beijing, China

